RADIATORS

Force in tank replacement work from Modine

hen it comes to assembling plastic tanks, one basic principle applies to all types: you must properly compress the gasket. If you don't, you run the risk of having to do the job over. In tank assembly, a good PTR fixture is essential, along with adherence to several basic principles. PTR fixtures may either be of the manual type (screw clamps) or pneumatic type (air-operated cylinders).

Apply Force First

Before closing tabs, setting dimples or engaging latching strips, force must be applied on each tank, creating a seal by compressing the gasket. This seal must be continuous, around the full perimeter of the tank, and should not be disturbed until closure of all the tabs or strips is accomplished. Never try to create a seal as you crimp. Too much crimping force, even in one small spot, can damage the tank or header trough.

Even when working with heavy-duty radiators, you must be aware of the misapplication of force. It is not a good practice to compress one tank end at a time, just because you don't have enough screw-clamps, this can warp the header, making it even more difficult to create a lasting seal.

Gaining Uniformity

Creating a uniform seal depends on two factors: 1) the proper number and placement of screw-clamps, and 2) the application of equal force to all screw-clamps. You can easily tell how many screw-clamps to use (two, three, four or five) based on the length of the gasket or tank. Position screw-clamps two to three inches from each end of the tank, and six to eight inches apart between the ends. Each one is capable of compressing 12 to 16 inches of gasket material. Screw-clamps with acme threads are easy to turn and are capable of delivering the full range of force needed to properly compress all types of gaskets. Remember, if you use fewer clamps than are needed (and leave too much space between clamps), the gasket compression will not be uniform, no matter how much force is applied.

The amount of force recommended for each screw-clamp is based on just one factor: the type of gasket you are compressing. It helps to have screw-clamps that are calibrated to show the correct level of force for each type of gasket.

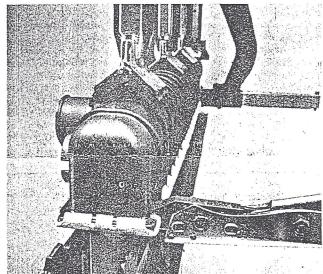
With few exceptions, PTR gaskets fall into three basic categories: 1) round automotive, 2) flat automotive, and 3) heavy-duty. Generally, the round automotive type are

the most user-friendly. They compress easily and they can be shortened or spliced. Flat gaskets require more force to compress, and heavy-duty gaskets are in a league by themselves. They require much more force because of their thickness and also because they are used in more rigorous applications (see Chart One).

More About "Force"

We've used the word "force" to describe the pounds (think of the pounds as actual weight) placed on each screw-clamp. We haven't used the word "pressure" because it is often associated with shop air pressure or PSI (pounds per square inch), which is a term used by builders of pneumatic fixtures.

How does actual pounds of force compare to PSI? To figure the maximum pounds of force created by a typical pneumatic (air) cylinder, use this formula: $\pi R^2 \times PSI =$


Example: Divide the inside diameter of the air cylinder by two, which gives you the radius. Square the radius (multiply it by itself) then multiply this total by 3.1416 to determine the surface area in

square inches. Multiply the square inches x PSI to determine the maximum pounds of force each cylinder can deliver, based on your shop's air pressure (see Chart Two). Note: Air pressure should be measured at the fixture, rather than at the

Clamp Over Ribs

There's another important factor to consider when positioning force is applied. In well-made tanks, the potential for distortion/ damage is greatly reduced. However, thin tanks which are not reinforced distort quite easily.

Manual screw-clamps which are utilized with the TankMate™ (see photo below) offer a saddlelike clamping pad that transfers more of the clamping force to the gasket through the side walls of the tank. Spreading force over a larger

The proper positioning of screw-clamps along the top of the tank, as shoun bere, assures that uniform pressure is being applied.

pneumatic cylinders and/or certain manual clamps onto plastic tanks. Those that use small clamping pads (some are about a diameter of a quarter) should always be placed directly over the nearest reinforcing rib. These are the points on a tank which will transfer the greatest amount of downward force to compress the gasket underneath. They also offer the greatest resistance to distortion or damage when sudden

area, on or close to the shoulders of the tank, minimizes distortion

and reduces the likelihood that you will crack the tank. Mastering the Basics After absorbing the basics, you

may no longer need to actually measure a tank to determine how many clamps to use, or to calculate the actual pounds of force. In time, as many readers will attest, it will become second nature to you. You will be able to size up every job just by visual inspection of the tank and gasket.

With the things we've covered, you may have an idea as to the type of fixture you need. Even if you already own one, you may want to consider upgrading it by adding one or more pneumatic cylinders or screw-clamps.

These articles were written by Larry LePrevost of Johnson Manufacturing Company.

CHART ONE

Recommended Pounds of Force to uniformly compress 12 to 16 inches of Gasket Material using one Screw/Clomp

TYPE OF GASKET, APPLICATION	POUNDS OF FORCE	
Round Automotive Gaskets	135	
Flat Automotive Gaskets	195	
Heavy-Duty PTR Gaskets	395	

Maximum Pounds of Force created by one

rneomanc Cylinder			
I.D. OF EACH AIR	SHOP AIR PRESSURE, PSI		
CYLINDER	90	120	150
1-1/16 inches	71	94	133
*1-1/2 inches	159	212	265
1-3/4 inches	216	288	360

^{*}Most common size for PTR fixtures